Skip to content

HunYuan3D AI Installation Guide: Step-by-Step Setup Instructions

Published: at 09:44 AM

HunYuan3D AI Installation Guide: Step-by-Step Setup Instructions

Introduction

This comprehensive guide walks you through the process of installing HunYuan3D AI on your local system. For alternative deployment methods, see our guides on Docker deployment or explore the technical architecture.

System Requirements

Hardware Requirements

Software Requirements

Pre-Installation Steps

1. Environment Setup

# Create and activate virtual environment
python -m venv hunyuan3d-env
source hunyuan3d-env/bin/activate  # Linux/macOS
.\hunyuan3d-env\Scripts\activate    # Windows

2. CUDA Installation

  1. Download CUDA Toolkit from NVIDIA website
  2. Install CUDA following platform-specific instructions
  3. Verify installation:
nvidia-smi
nvcc --version

3. Dependencies Installation

# Install required system packages
pip install --upgrade pip
pip install wheel setuptools

Installation Process

1. Clone Repository

git clone https://github.com/tencent/Hunyuan3D-2
cd Hunyuan3D-2

2. Install Requirements

pip install -r requirements.txt

3. Install HunYuan3D

python setup.py install

4. Verify Installation

python -c "import hunyuan3d; print(hunyuan3d.__version__)"

Post-Installation Configuration

1. Environment Variables

# Linux/macOS
export HUNYUAN3D_HOME=/path/to/hunyuan3d
export CUDA_VISIBLE_DEVICES=0

# Windows
set HUNYUAN3D_HOME=C:\path\to\hunyuan3d
set CUDA_VISIBLE_DEVICES=0

2. Model Downloads

# Download pre-trained models
python -m hunyuan3d.utils.download_models

3. Configuration File Setup

# config.yaml
model:
  type: "standard"
  precision: "float16"
  cache_dir: "./model_cache"

system:
  gpu_memory_fraction: 0.8
  num_threads: 4
  log_level: "INFO"

Testing Installation

1. Run Basic Test

python -m hunyuan3d.tests.basic_test

2. Generate Test Model

import hunyuan3d

# Initialize generator
generator = hunyuan3d.Generator()

# Generate simple model
result = generator.generate(
    prompt="simple cube",
    output_format="obj"
)

Common Issues and Solutions

  1. Error: CUDA not found

    • Solution: Verify CUDA installation and PATH
    echo $PATH  # Check CUDA in path
    nvidia-smi  # Verify GPU access
    
  2. Error: GPU memory insufficient

    • Solution: Adjust memory usage in config
    system:
      gpu_memory_fraction: 0.6  # Reduce from 0.8
    

Python Environment Issues

  1. Error: Package conflicts

    • Solution: Clean installation
    pip uninstall hunyuan3d
    pip install --no-cache-dir hunyuan3d
    
  2. Error: Version mismatch

    • Solution: Check compatibility
    pip list | grep torch
    pip install torch==1.12.0  # Use compatible version
    

System Integration Issues

  1. Error: Path not found

    • Solution: Verify environment setup
    echo $HUNYUAN3D_HOME
    ls $HUNYUAN3D_HOME/models
    
  2. Error: Permission denied

    • Solution: Check file permissions
    chmod +x setup.py
    sudo chown -R user:user .
    

Optimization Tips

Performance Tuning

  1. GPU Optimization
system:
  cuda_cache_size: "2GB"
  precision: "float16"
  1. Memory Management
system:
  batch_size: 1
  worker_threads: 2

Resource Management

  1. Cache Configuration
cache:
  model_cache_size: "5GB"
  texture_cache_size: "2GB"
  1. Log Management
logging:
  level: "INFO"
  file: "hunyuan3d.log"

Next Steps

1. Integration Setup

2. Learning Resources

Support and Updates

Getting Help

Staying Updated

Conclusion

Following this installation guide should give you a fully functional HunYuan3D AI setup. If you encounter any issues not covered here, please check our community forum or raise an issue on GitHub.


This guide is part of our HunYuan3D AI documentation series. For an overview of the system, see our introduction.


Previous Post
HunYuan3D AI Docker Deployment Guide: Best Practices for Containerization
Next Post
HunYuan3D AI in Game Development: Case Studies