HunYuan3D AI Docker Deployment Guide: Best Practices for Containerization
Introduction
This guide details how to deploy HunYuan3D AI using Docker containerization. Compared to local installation, Docker deployment offers better environment isolation and scalability. This guide will help you achieve efficient containerized deployment.
Prerequisites
System Requirements
- Docker Engine 20.10+
- Docker Compose 2.0+
- NVIDIA Container Toolkit
- 4+ CPU cores
- 16GB+ RAM
- CUDA-compatible NVIDIA GPU
Environment Setup
# Verify Docker installation
docker --version
docker-compose --version
# Verify NVIDIA support
nvidia-smi
nvidia-container-cli -V
Basic Deployment
1. Get Official Image
# Pull latest version
docker pull tencent/hunyuan3d-2:latest
# Or specific version
docker pull tencent/hunyuan3d-2:v2.1.0
2. Basic Run
docker run -d \
--name hunyuan3d \
--gpus all \
-p 7860:7860 \
-v $(pwd)/data:/app/data \
tencent/hunyuan3d-2:latest
3. Verify Deployment
# Check container status
docker ps -a | grep hunyuan3d
# View logs
docker logs hunyuan3d
Advanced Configuration
Docker Compose Configuration
# docker-compose.yml
version: '3.8'
services:
hunyuan3d:
image: tencent/hunyuan3d-2:latest
container_name: hunyuan3d
runtime: nvidia
environment:
- NVIDIA_VISIBLE_DEVICES=all
- MODEL_CACHE_DIR=/app/cache
- LOG_LEVEL=INFO
volumes:
- ./data:/app/data
- ./cache:/app/cache
- ./config:/app/config
ports:
- "7860:7860"
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: all
capabilities: [gpu]
Environment Variables
# .env
HUNYUAN3D_VERSION=latest
MODEL_CACHE_SIZE=5GB
GPU_MEMORY_FRACTION=0.8
NUM_WORKERS=4
LOG_LEVEL=INFO
Performance Optimization
1. Container Resource Management
# Limit CPU and memory
docker run -d \
--cpus=4 \
--memory=16g \
--memory-swap=20g \
tencent/hunyuan3d-2
2. GPU Configuration
# gpu-config.yaml
compute:
cuda_cache_size: "2GB"
precision: "float16"
batch_size: 1
num_workers: 2
3. Cache Optimization
# cache-config.yaml
cache:
model_cache_path: "/app/cache/models"
texture_cache_path: "/app/cache/textures"
max_cache_size: "10GB"
cleanup_interval: "1h"
Multi-Container Deployment
1. Service Orchestration
# docker-compose.prod.yml
version: '3.8'
services:
hunyuan3d-api:
image: tencent/hunyuan3d-2:latest
# API service configuration
hunyuan3d-worker:
image: tencent/hunyuan3d-2:latest
# Worker node configuration
hunyuan3d-cache:
image: redis:alpine
# Cache service configuration
hunyuan3d-monitor:
image: grafana/grafana
# Monitoring service configuration
2. Load Balancing
# nginx.conf
upstream hunyuan3d {
server hunyuan3d-1:7860;
server hunyuan3d-2:7860;
server hunyuan3d-3:7860;
}
Monitoring and Maintenance
1. Health Checks
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:7860/health"]
interval: 30s
timeout: 10s
retries: 3
2. Log Management
logging:
driver: "json-file"
options:
max-size: "10m"
max-file: "3"
3. Monitoring Metrics
monitoring:
metrics:
- container_cpu_usage
- container_memory_usage
- gpu_utilization
- model_inference_time
Troubleshooting
1. Container Startup Issues
# Check GPU visibility
docker run --rm nvidia/cuda nvidia-smi
# Check port usage
netstat -tulpn | grep 7860
2. Performance Issues
# View container resource usage
docker stats hunyuan3d
# Monitor GPU usage
nvidia-smi -l 1
3. Network Issues
# Check network connectivity
docker network inspect bridge
# Test container communication
docker exec hunyuan3d ping redis
Production Deployment
1. Security Configuration
security:
# Disable privileged mode
privileged: false
# Add security options
security_opt:
- no-new-privileges
# Resource limits
ulimits:
nproc: 65535
nofile:
soft: 20000
hard: 40000
2. Backup Strategy
# Volume backup
docker run --rm \
-v hunyuan3d_data:/data \
-v $(pwd):/backup \
alpine tar czf /backup/data.tar.gz /data
3. Update Process
# Smooth update
docker-compose pull
docker-compose up -d --remove-orphans
Integration and Extensions
1. API Integration
- Refer to API Documentation for interface configuration
- Set up authentication and authorization
- Configure CORS access
2. Blender Plugin
- Refer to Blender Integration Guide
- Configure plugin connection
- Set up resource sharing
Next Steps
1. Deep Dive
2. Community Resources
Summary
Docker deployment of HunYuan3D AI enables flexible environment management and efficient resource utilization. This guide covers the complete process from basic deployment to production optimization, helping you build a stable and reliable 3D generation service.
This article is part of the HunYuan3D AI documentation series. For system overview, please refer to the Getting Started Guide.